The generator matrix

 1  0  0  0  1  1  1  3  1  1  1  1  1  X  1 2X+3  1  1  1  1 X+3  3  0 2X 2X+6  1  1 X+6  1  1  1  1  1  1  1  1  6  1  1  1  1  1  1  1  1  1 2X+3  1  1  1  1  0 X+6  0  1 2X+3 2X  1  1  3  1  1  1  1 2X  1  1  1  6  1  1  1 X+3 2X  1
 0  1  0  0  3  1  7  1  X X+6 2X+8 2X+5 X+7  1 X+2 2X+3 X+1 2X  5  6  1  1  1 X+3  1 X+7 X+5  1 2X+5 2X+7 X+5 X+8 2X+1  X  7 X+6  1 2X+5 2X+1  X  5 2X 2X+4  0  X  2 X+3 X+5  4  8  1  1  X  1 X+4  1  1  2  X 2X+3 2X+3 2X+1  4 2X+2 X+6  7 X+1  5  1 X+1 X+6 X+6  1  1 2X+6
 0  0  1  0 2X+4 2X+1 X+2 2X+4 X+1 X+5  6  4 X+7 2X+7  8  1 X+3 2X+2 2X+8 2X+3  2 X+4 X+2  1  6  1 X+7 X+8 2X+8  3 X+6 2X+7 X+5 2X+5  3  7  6 2X+3  2  X X+4  X 2X+4 X+1 X+5 X+6 X+6  7  1  8  8 2X X+6 X+1  X X+6  2  0 X+7  1  5 2X X+6  3  1 2X+7 X+2  6 X+4  2 X+1 X+3  5 X+6 2X+3
 0  0  0  1 2X+2  6 2X+8 2X+8  7  X  1 X+6  5 X+3  8 X+1 2X+1 X+7 2X+7  2 2X+4 2X+1 X+6 2X+5  7  1 2X+2 X+2  3  5 X+3  7 2X+1  5  X 2X  2 2X+5 X+3  3 X+1  7 X+7 2X+4 X+7 X+6  1 X+5 2X+8 2X+6 2X+4 X+4  1 2X+2 2X+8 2X+8 X+5  7 2X+1 2X+7 X+5  0 2X+3 X+2 X+5  5 2X X+3  1  8 X+8  8 X+6 X+7 2X+7

generates a code of length 75 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 138.

Homogenous weight enumerator: w(x)=1x^0+666x^138+1128x^139+4596x^140+6290x^141+8328x^142+14370x^143+18856x^144+20802x^145+30960x^146+37506x^147+36204x^148+51210x^149+51952x^150+46308x^151+52032x^152+45892x^153+32526x^154+29232x^155+19530x^156+9504x^157+7824x^158+3310x^159+1104x^160+726x^161+306x^162+72x^163+18x^164+78x^165+18x^166+18x^167+44x^168+6x^169+12x^170+6x^171+6x^172

The gray image is a code over GF(3) with n=675, k=12 and d=414.
This code was found by Heurico 1.16 in 528 seconds.